Contribution from the Laboratory of General and Inorganic Chemistry, Faculty of Science, The University, P.O. Box 153, 41001 Zagreb, Yugoslavia

The Crystal Structure of Phenylmercury(II) Acetate

B. Kamenar and M. Penavić

Received June 17, 1971

Phenylmercury(II) acetate crystallizes in the monoclinic system, the space group $P2_1/c$, with four molecules per unit cell. The unit cell dimensions are: $a=5.24\pm0.01$ Å, $b=24.20\pm0.04$ Å, $c=7.50\pm0.02$ Å, $\beta = 114.0 \pm 0.4^\circ$, the measured and calculated densities are 2.54 and 2.57 g/cm³, respectively. The structure has been solved using 551 independent reflections collected about c-axis on integrated equiinclination Weissenberg photographs and refined by least-squares method to R = 0.111. The structure is built up of the discrete $C_6H_5HgOCOCH_3$ molecules. The mercury atom is covalently bound to the phenyl ring on one side and to one acetate-oxygen atom on the other to give the characteristic digonal co-ordination. The Hg–C and Hg–O bond lengths are $1.92 \pm$ 0.06 and 2.11 ± 0.04 Å, respectively. The C-Hg-O bond angle amounts to $170 \pm 2^{\circ}$.

Introduction

No crystal structure of any mercury acetate has been reported so far. Even the crystal structure of mercury(II) acetate is still unknown because the compound is sensitive to light and the crystals decompose under the X-ray radiation.¹ The crystal structure determination of phenylmercury(II) acetate has been undertaken to explain the way in which the acetate is bound to mercury. In molecules with the general formula RHgX, the mercury atom is bound in two different ways: covalently to the carbon atom, of the organic part of molecule, and with more or less ionic bond to the ion X^- .

It is well known that mercury does not show any tendency to form chelate structures, and such a structure was not expected also in the case of phenylmercury(II) acetate. The results of this investigation as well as the structures of tolylmercury(II) acetate, which is now in progress,² confirm this generally accepted consideration.

Experimental Section

The crystals of phenylmercury(II) acetate were prepared in the form of thin needles from benzene solution with commercially available chemicals. The crystals obtained were all twins with the basal pina-

(1) H. Puff, G. Lorbacher, and R. Skrabs, Acta Cryst., 19, 870 (1965).
(2) D. Grdenić, B. Kamenar, and M. Gjogić-Nöthig, to be published.

coid {001} as the twinning plane. It was impossible to separate the individual single crystal.

The lattice parameters were determined from oscillation and Weissenberg photographs at the room temperature and the standard deviations were estimated from several film measurements. The systematic absence of the reflections h0l for l odd and 0k0 for kodd uniquely determined the space group as $P2_1/c$. Crystal data are shown in Table I. Three-dimensional intensity data ($hk0 \rightarrow hk6$) were recorded on Nonius-Delft integrated multiple films equi-inclination Weissenberg photographs with CuK_{α} radiation and determined photometrically. A total of 551 independent reflections were strong enough to be observed. The intensities were corrected for Lorents and polarization factors but absorption and anomalous dispersion corrections were not applied. The brittle crystals could not be ground into spherical or cylindrical forms. The size of the crystal used was $0.16 \times$ 0.11×0.05 mm.

Table I. Crystallographic data for C₆H₅HgOCOCH₃.

M. W. = 333.74 Crystallographic system: monoclinic Space group: $P2_1/c - C_{2h}^5$ Unit cell parameters: $a = 5.24 \pm 0.01$ Å $b = 24.20 \pm 0.04$ Å $c = 7.50 \pm 0.02$ Å $\beta = 114.0 \pm 0.4^{\circ}$ V = 868.8 Å³ Z = 4 $d_{calc} = 2.57$ g cm⁻³ $d_{obs} = 2.54$ g cm⁻³ (picnometrically) μ CuK_a = 348 cm⁻¹

The mercury atom was located from Patterson projections obtained by means of the von Eller photosommateur. A three-dimensional Fourier map was then calculated on the basis of the contribution of mercury atom which gave the R factor of 0.21. Although some spurious peaks were present on the Fourier map, particularly around the mercury atom, the locations of all light atoms were determined by computation of two successive Fourier and difference syntheses. The structure was than refined by several cycles of full-matrix least-squares refinement with isotropic thermal parameters for all except hydrogen atoms. At this stage of refinement the reliability index was R = 0.177. Six cycles of the refinement

Kamenar, Penavić | Phenylmercury(II) Acetate, Crystal Structure

Table	IJ.	Observed	and	calculated	structure	factors	(x 100)
							· /

h k 1	У.	r _c	h k 1	P.0	F.c	h k 1	r ₀	r _c	h k 1	Fo	°,	h k	1 7	o ^y c
			1 14 -1	4085	-1756	1 5 -2	11879	14382	1 15 -3	7712	7810	3 12	-4 107	12 9988
6	3446	5112	15	8775	-8663	- į	6214 12757	-7554	16	8015 7115	7525 6149	14 17	97	05 7995 77 48 94
8 10	9815 -9 17495 -17	1757	18	7778	-7240	ĩ	11574	14104	20	6185	4393	4 0	-4 161 154	59 -16370 51 -13990
12	20095 -21 17059 -17	1461 7185	20 26	5559 2869	-4795 1643	8 9	8450 9776	10150		13630	11820	4	98	64 -8360
16 20	10071 -	288	2.11	20990 5898	-21136 4746	10	13966 4942	4854	3	10795	-11195	10	99	24 10218
22	7020	7191	2	15876	-14952	12	15452	15700 12254	11	10784 91 3 0	-11049 -9794	12	71	06 8295
26	5150	5749	7	3479	3719	15	8509	-7154	15	7820	-6955	5 9	-4 69	26 -6280
100	16839 15	5559 8508	11	15157	14395	17	9386	-9184	• • •	17644	-18165	Ś	108	92 10101 07 10571
2	21026 18	8675 7978	15 15	11785 7605	12151 8275	19 21	4936 4394	-5262	7	4355	5517	ģ	101	51 6656
í	12939 11	1214	21	5027	-4867	22	4380 3426	-4296 -4961	9 11	11294	1168U 15789	11	51	05 -5499
6	4052	2497	25	4491	-4508	26	5082	-3756	13	15755	14850 10200	6 10 0 2	-4 29 5 10	957 -2087 987 -9697
8	12150 -10	0436	2 <u>1</u> -1	20543	17420	2 ²	5499	4393	25	5168	-6152	4	140	515 -15701 55 -15435
9 10	15757 -1	5829 5127	\$	5649 9745	8340	5	18552	18450	• • í -	5 15051	-13708	8	154	191 -15070
11	7410 -	6606 5148	67	3602 4036	-2619 -3239	7 9	18554 12087	11925	5	10750	-9679	16	8	781 7900
15	3663	2542	9	14461	-13447	10	5197 5274	-2441 5852	4 6	15466 15581	12889 14965	20	5	154 6115
15	7412	7477	15	14595	-14144	15	6624 8414	-6857	8	12489 10494	12410 9114	1 1	5 15	287 -11510 192 -8540
17	10677 10	0160	21	5629	5329	19	7526	-8971	10	7245	6057 10885	4	93	28 -6925 716 -8215
19 21	7477 5248	4654	25	4472	5277	2 0 -2	3274	2599	15	9058	9714	8	86	355 -7285 31 7255
22 24	4794 4138	4196 4604	27 5 5 1	1679 5404	-7061	5	16587	15822	16	7781	-7580	11	8	134 8615
200	6025 - 10132 -	5164 8068	4	10897 12276	12127 14900	57	21208 20940	20966 22163	20	6556	-5159	15	50	540 5754
2	17929 -10	6515	8	11846	15197	9	15801	15500 5499	4 2 -	5 9501 15855	8246 14745	1 1	-5 102	287 12060
4	2 3077 -2	2317	10	5145	5150	15	4258	-3560	6	17586	16979	2	7	567 8688 557 11714
11	5171 -	4712	15	5129	5306	17	12145	-11525	10	8195	7177	6	11	109 15770
15 15	4138 9266	3501 9472	16 18	5607 6256	-6488 -6953	21	5056	-6005	16	8067	-8266	9	6	587 -6249
17	11007 1	1467 9532	20 3 1 -1	4606 10609	-5507 10514	77 2 8	5548 7497	6967 6629	18 20	7636 5174	-7178	11	6	107 -7301
21	6789	7110	2	11254	-10016	10	8760 7606	-9683 -8796	5 4 -	5 7284 6694	7212 7828	13 15	70	507 -7172 931 -4854
2	12535 -1	2092	ź	16551	-14661	14	7514	-8188	8 10	7155	6671 4192	16 18	5	743 -6233
2	10716 -1	0507	8	14118	-13554	2	12724	11120	11	6352	-8446	2 1	-5 14	1956 19527
7 8	10247 -1 7625	7448	10	9174	-8481	4	7697	6746	17	5498	-2110	5	5	586 5977
9 10	6144 - 11033 1	6556 1176	11	9855 7914	-9008 -7653	57	15142 11580	11416 10520	02	4556	-5509	11	126	324 -13468
12	9864 1 7336	0726	14	5877 6008	4216 -5115	8	7854 8062	-7429 7974	4 5	10861 5435	8793 -3947	13 15	12	970 -12140 970 -8409
15	4273	5600	16	7609	7626	1Ó 12	10841	-11485	7	5546	-3350	5 1 2	-5 11	123 12109
17	4285	5153	20	5896	5855	14	8451	-8483	10	15170	-13014	2	9	597 9216 975 -9240
4 0 0	12258 -1	5999	22	2924	5588	19	4353	-5185	14	10860	-10589	6	ģ.	19 -9865
4	5595 -	2585	4 2 -1	7914	-7521	22	2870	4032	24	4253	5087	9	8	956 -8488
8 10	4794 6779	5679 9570	4	12526 13828	-13997 -16298	4 0 -2	14467 13737	15519 14212	1 0	4010 4 8840	5495 7063	10	8	513 -4998 524 -9104
12	7552	9627 7910	8 10	12035	-14291	4	6533	8260 -6751	2	8929 11754	7892 -10066	15	e 5)70 -8950 763 -6978
5 0 0	4017 -	5820	14	3939	4558	10	8700	-10165	5	15576	-15648	20 4 2	-5 100	199 5515 089 -7627
10	3984	2550	18	6817	8421	14	7981	-6383	19	10584	-9720	4	14	161 -12447 706 -14273
5	5648	4400	5 4 -1	4466	-5449	5 0 -2	5041	6497	20	2924	2126	, ě	15	516 -11780
5	3503 -	2575	8	4301	-4784	10	5511	-4127	15-	5895	-8679	16	6	528 7297
8	20679 -2 16187 -1	2932 7456	6 2 -1	5487 4083	-5517 1546	14 18	2996 2 3 12	-3653 -250	\$	5067 8089	-11560	5 4	- 8	085 -6915
10 14	10448 -1 7801	7500	0 1 2	2990 7586	2589 6154	6 2 -2	4275	-2691 11994	7	9240 4939	-11059 -7105	6 8	91	309 -8140 823 -7173
16	11304 1	2132	2	26562	-27129	4	18405	18945	10	6213	-6782	10	6	725 6226
20	7827	7076	é	16745	-15971	8	16978	16882	12	9069	-11996	11	6	171 7303 65 6240
1 1 1	17492 -1	5380	6	5597	-1977	14	5996	-5750	15	6083	5558	15	3	204 4043
ş	10105 -	9209	10	16955	16724	18	10650	-10482	17	7051	6378	4	7	244 -5915
4 5	19319 -1 2173 -	2976 2168	12 14	17271 13719	17956 14258	1 1 5	7933 18145	-7574 15566	19 24	5457 2716	5163 4034	8 10	7	364 5595 518 8762
6 7	15037 -1 6461	5899 5482	16 20	7814 5503	7920	2	6350 10034	5412 7111	2 5	5196 11121	3046 -11701	12	-6 100	566 8633 045 -11831
ê 9	15098 -1	2495	22	6500	-6310	Á	12485	10764	7	10757	-12229	2 0	-6 1	194 -4075 128 -2252
10	5905 -	4488	1 0 2	17415	-15500	7	5088	-3747	21	2892	5775	- 7	10	768 13243
15	10999 1	1729	2	15750	-11645	, Š	9164	-8525	2 1 -	7085	-7780	15	4	945 -6345
16	7181	7023	4	8655	-7228	11	11899	-10865	2 .	15234	-17585	2	-0 12	150 9760
17	6624	6786	2	22234	20450	15	7545	-7270	9	13449 9674	-13941 -11629	5	70	980 9440
20	5970	5067 2349	8	6988 14945	5272 13836	16 18	6076 6779	-5653	11	5663 9512	-4720 8516	79	9	754 9460 014 6796
1 1 -1	19946 2 8812	02 58 7497	10	10604 5616	9570 5358	1 5 -5	5760 7588	2748 -10785	17	9914 8951	10232	10 12	8	210 -7155
2	7914	7654	12	9477	8965	4	8755	-11 597	21	4550	5169	4 0	-6 14	362 14070 977 12269
5	6912	5617	15	7666	-7579	6	11426	-16157	2	12797	-11860		10	11 7658
7	5547 -	4911	19	7149	-7200	.9	8670	9300	4	7513	-6527	12	8	166 -9689
9	9745 -	9638	1 0 -2	18084	-24453	11	12008	12929	7	12096	-11655	5 5	-6 6	100 -6587 190 -6587
10	16014 -1	5997	2	12483	15100 -15900	15	10442 5220	10839 3994	8 10	7052 8920	6614 9927	7	61	327 -8798 597 -8545
15	15578 -1	5082												

Table III. Atomic and thermal parameters⁴ with their estimated standard deviations (in parentheses).

Atom	x	/a	y/b	z/c		B(Å ²)		
Hg	0.1347	/(6)	0.0410(1)	0.2559	(5)	· · · ·		
C(1)	0.280(13)	0.115(3)	0.303(11)	1.76(1.6)		
C(2)	0.581	16)	0.122(3)	0.460(13)	4.01(1.5)		
C(3)	0.708(23)	0.171(5)	0.470(18)	7.70(1.9)		
C(4)	0.560(22)	0.223(4)	0.424(17)	6.58(2.0)		
C(5)	0.270(19)	0.217(4)	0.303(16)	5.76(2.4)		
C(6)	0.164(18)	0.167(3)	0.262(0.262(16)			
C(7)	0.438(18)	0.097(4)	0.132(0.132(16)			
C(8)	0.257(13)	-0.044(3)	0.207(11)	2.60(1.5)		
O(1)	0.053(7)	-0.037(2)	0.156(6)	1.27(0.75)		
O(2)	0.326(10)	0.008(2)	0.308(8	3)	3.75(1.14)		
Hg	β.,	β2	β ₃₃	β12	β13	βΒ		
	0.0185(10)	0.0018(5)	0.0114(7)	0.0002(3)	0.0075(7)	0.0003(3)		
				E (0 11 0				

 $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + \beta_{23}kl)].$ ^a The anisotropic temperature factors for the Hg atom are in the form:

Table IV. Intramolecular and intermolecular distances (in Å) and angles a (in deg.) with their estimated standard deviations⁶ in parentheses).

Hg-O(1)	2.11(4)	O(1)-Hg-C(1)	170(2)
Hg-C(1)	1.92(6)	O(1)-Hg- $O(2)$	52(2)
C(1)-C(2)	1.55(11)	O(1)-Hg- $O(2)$ ⁱⁱⁱ	89(2)
C(2)-C(3)	1.35(14)	C(1)-Hg-O(2) ⁱⁱⁱ	93(2)
C(3)-C(4)	1.44(15)	C(1)-Hg- $O(2)$	131(2)
C(4)-C(5)	1.43(15)	C(6)-C(1)-C(2)	107(6)
C(5)-C(6)	1.33(13)	C(1)-C(2)-C(3)	118(8)
C(6)-C(1)	1.37(11)	C(2)-C(3)-C(4)	123(7)
C(7)-C(8)	1.54(12)	C(3)-C(4)-C(5)	114(9)
C(8)-O(1)	1.29(8)	C(4)-C(5)-C(6)	119(8)
C(8)-O(2)	1.31(9)	C(5)-C(6)-C(1)	133(8)
Hg-O(2)	2.85(5)	C(7)-C(8)-O(1)	118(6)
$Hg-O(2)^{i}$	3.11(5)	C(7)-C(8)-O(2)	120(6)
Hg-O(1) ¹¹	2.95(4)	O(1)-C(8)-O(2)	122(6)
Hg-O(2) ⁱⁱⁱ	2.94(5)		
C(3)-C(6) ⁱⁱⁱ	3.35(15)		
$C(2)-C(7)^{i}$	3.50(15)		
$C(1)^{iv}-C(7)^{i}$	3.71(14)		
C(4)-C(4) ^v	3.97(14)		

^a The positions are denoted as follows: no label x, y, z; (i) -x, -y, 1-z; (ii) -x, -y, --z; (iii) 1+x, y, z; (iv) x, y, 1+z; (v) x, 1/2-y, 1/2+z.

process were then computed using anisotropic thermal parameters for the mercury atom only. The weighting scheme adopted was w=1 for all reflections whose intensities were determined with an optical densitometer, and w = 0.25 for reflections which were estimated visually (slightly above film background). The final reliability index R for the observed reflections was 0.111. Table II lists the observed structure amplitudes and calculated structure factors based on the final atomic parameters given in Table III. Atomic scattering factors used were taken from International Tables for X-ray Crystallography.3

Structure factors and Fourier syuthesis were calculated on the Science Research Coucil Atlas computer at Didcot, England, while the difference syntheses⁴ and least-squares refinement^{5,6} were carried out on the University Institute of Mathematics CAE 90.40 computer in Zagreb.

Results and discussion

The structure is shown in Figure 1 and the intramolecular and intermolecular distances and interbond angles are given in Table IV.

She Oc ⊗0

Figure 1. The structure of phenylmercury(II) acetate projected down the c-axis.

The crystal structure is built up from isolated phenylmercury(II) acetate molecules. The mercury atom, which is in general position in the unit cell, is on one side covalently bound to the phenyl ring and on the other side to one oxygen atom from the acetate ion so that the mercury has the charasteristic digonal co-ordination with two almost collinear bonds. The phenyl-carbon to mercury bond lenght of 1.92 Å is relatively short but similar to that of 1.97 Å found in mercury(II) oxycyanide.7 The mercuryoxygen (from the acetate ion) bond length 2.11 Å, is very close to the values found in mercury(II) sulphate monohydrate⁸ as well as in basic mercury(II)

^{(3) «} International Tables for X-ray Crystallography », Vol. 111, Kynoch Press, Birmingham, 1962, p. 220.
(4) B. Zelenko, (1968). Private communication.
(5) S. Polić, (1968). A local version of the program by W.R. Busing, K.O. Martin, and H.A. Levy, ORFFE, A Fortran Crystallographic Function nad Error Program, U.S. Atomic Energy Commision Report ORHL-TM-305 (1962).

^{(6) «}International Tables for X-ray Crystallography», Vol. 11, Kynoch Press, Birmingham, 1959, p. 331
(7) (a) S. Šćavničar, Acta Cryst., 13, A57 (1960); (b) S. Šćavničar, Z. Krist., 118, 248 (1963).
(8) A. Bonefačić, Acta Cryst., 14, 116 (1961).

suphate dihydrate⁹ (2.10 and 2.12 Å respectively). The second oxygen atom of the same acetate ion is 2.85 Å from mercury showing clearly that the phenyl-mercury(II) acetate does not have a chelate structure. This oxygen is approximately half way between two mercury atoms related by translation along the *a*-axis direction: the mercury-to-oxygen contact from the next nearest acetate along *a*-axis is 2.94 Å. The oxygen of the acetates of the upper and lower neighbouring molecules are 3.11 and 2.95 Å from mercury (Figure 2). All these values are the same or close to the sum of the van der Waals radii of mercury and

Figure 2. The arrangement of the acetate around mercury with atom designations.

(9) (a) A. Bonefačić, Acta Cryst., 16, A30 (1963); (b) A. Bonefacic, Thesis, University of Zagreb, 1963.

oxygen (1.50+1.40).¹⁰ The O-Hg-C bond angle deviates 10° from linearity what is very known in the stereochemistry of mercury.¹⁰

The rather high standard deviations of the positional parameters of light atoms are explained by the presence of heavy mercury atom and the absence of an absorption correction. Nevertheless, the bond distances and angles within acetato ion and phenyl ring are consisten with the expected values.

The contacts between molecules are those expected for van der Waals interactions. The molecules are arranged in such a way that the planes of the phenyl rings are approximately parallel to the (110) plane of the crystal. The methyl groups of acetate ions are located between these phenyl rings planes so that there are two methyl-to-phenyl contacts (C(2)...C(7)ⁱ and C(1)^{iy}...C(7)ⁱ) of 3.50 and 3.71Å respectively. Along the *b*-axis direction the nearest intermolecular contact (C(4)...C(4)^v) of 3.97 Å is between two phenyl rings symmetrically related by the glide plane. Two phenyl rings symmetrically related by translation along the *a*-axis come close together making the distance between C(3)...C(6)ⁱⁱⁱ atoms relatively short, 3.35 Å.

Acknowledgments. The authors thank Professor D. Grdenić for suggesting the problem and his interest in this work, Professor R. Mason and Dr. N. A. Bailey from Sheffield University for the help in computing facilities, and Dr. B. Matković, Ruder Bošković Institute, Zagreb, for a helpful discussion on the local version of CAE 90.40 computer programmes.

(10) D. Grdenić, Quart. Rev. Chem. Soc., Lond., 19, 303 (1965).